
Pangolin: A look
at the conceptual
Architecture of
Super Tux Kart

A CISC 326 Project by:
Mohammed Gasmallah Leonard Ha
Russell Dawes Vincent Hung
Caleb Aikens Joseph Landy

O
ve

rv
ie

w ● Architectural Style
● Conceptual Architecture
● Derivation Process
● Subsystems
● Use Case Diagram
● Sequence Diagram
● Considered Alternatives
● Concurrency
● Potential Development Team Issues
● Lessons Learned
● Conclusion

Previous
Architectural Style
Hypothesized

A layered style of architecture
with possibility of including
more client/server interactions
as well.

La
ye

re
d?

Using a layered architectural style gives us some huge
advantages for developing:

● Easy separation of modular parts through layered logic
● Separation of team to work on different segments
● Helps link User Interface with Game Client and Hardware

Abstraction Layer

Po
ss

ib
le

C

lie
nt

/S
er

ve
r Super Tux Kart is a prime game to include some networking as

networked races would be very popular.

Some talk of the implementation is being made and the
Client/Server architecture is the preferred model.

Security and accessibility are easily maintained with the
client/server model.

Cheating becomes harder.

Centralization makes abstraction of processes easier.

Derivation Process

● Used high level module documentation as base of operations
● Compared possible architectures with reference game engine architecture
● Identify dependencies

Module interaction diagram from documentation

Subsystems

The subsystems in our conceptual architecture are:

● File I/O
● Addon Manager
● UI
● Audio
● Graphics
● Physics
● Game Manager
● Player I/O
● Libraries
● Network Interface

Subsystems cont.

● File I/O
○ Component the game uses to save data

■ High Scores
■ Story Progress
■ Replays

○ Is only dependent on the Game Manager
■ Anything that would be saved is information contained by the Game Manager

● Addon Manager
○ An internal part of the game that allows for browsing and installing of additional content

■ new tracks
■ Modes
■ karts

○ Is only dependent on the Game Manager, because the effects of the addons just alter values
interpreted by the Game Manager

Subsystems cont.

● UI
○ The component through which the player interacts with the game

■ Menus
■ In Game Overlay
■ Sounds
■ Video

○ What the player uses to make decisions for future inputs
○ Is dependent on the Audio subsystem and the Graphics subsystem

■ Audio subsystem plays sounds triggered by UI elements
■ Graphics subsystem used to render UI elements to screen.

● Audio
○ Manages what sounds should be played and at what volume
○ Depends only on the Game Manager

Subsystems cont.

● Graphics
○ Handles rendering of content from Game Manager.
○ Wrapper over Irrlicht/Antarctica

■ Open source renderer for video games
■ Antarctica is a new renderer using some elements of Irrlicht, but with modern features

○ Adds additional functionality
■ Particle systems
■ Systems to simplify adding elements common in STK to the graphics context.

● Physics
○ Wrapper over Bullet

■ Open source physics library
■ Used by numerous games, engines and applications

○ Required by Game Manager to determine what the effects of game objects are upon each
other through physics simulations.

Subsystems cont.

● Game Manager
○ Every action and reaction passes through the Game Manager which delegates the

appropriate component to deal with it
○ Contains all active information about the current state of the game such as

■ Karts in play
■ What track the player is on
■ What mode is being played
■ Score/Position/Time

○ The Game Manager is affected by:
■ File I/O
■ Network Interface
■ Physics
■ Player I/O

Subsystems cont.

● Player I/O
○ The players raw inputs are received by this subsystem and are translated into commands that

the Game Manager will recognize

○ This component only relies on the UI for a range of allowed actions, such as whether or not
the player is interacting with a menu or if they’re in a race

○ As a more metaphorical link, the player’s inputs will depend on what the player sees from the
UI, such as turning if they are driving towards a cliff

● Libraries
○ Contains all of the assets for the programming of the game including

■ OpenGL
■ Bullet
■ Irrlicht

○ Also contains language dependencies
○ Almost all of the components in the Client are dependent on this subsystem

Subsystems cont.

● Network Interface
○ This is a mostly unused component at this time
○ This component takes one client’s state of the game and reports it to the server

○ The server then sends back its understanding of the state of the game based on all of the
reports from different clients

○ The local client adjusts the state of the game based on the new information

○ Currently the only network implementation that the game has is a friend system which allows
you to send and accept friend requests, and to view your friends’ profiles

○ This component has a dependency on the Game Manager, as the Game Manager contains
the state that the Network Interface wants to broadcast

Use Case Diagram

Retrieving a Bowling Ball from a Gift Box and
Hitting an Opponent with it

A
lte

rn
at

iv
es

? Thought about using a primarily object oriented style, but
settled on the fact that most likely a layered architecture was
used as the overall architecture of the game engine.

The networking was thought for a while to be perhaps peer to
peer because of certain naming conventions used in the
documentation. This again was settled by the fact that the
documentation seemed clear on the disadvantages of using a
peer to peer style.

Concurrencies

From the Architecture, we can deduce the following
concurrencies:

❏ Physics engine and Network Interface
❏ File I/O and Network Interface
❏ Player I/O and Network Interface
❏ Audio Engine and Graphics Engine

D
ev

el
op

m
en

t
Te

am
 Is

su
es

Team disagreements

❏ Although released in 2004, SuperTuxKart was
unplayable and unsupported for two years.

Issues with switching 3D engines

In 2010, the game switched to Irrlicht Engine from
PLIB which brought along many issues:

❏ A total rewrite of the GUI was needed
❏ Fans of the game were asked to test the game
❏ The entire process took approximately a year

and a half - advancing technology was being
developed as the engine was being
implemented

Lessons
Learned

● Designing a Game Engine
architecture is essential to mapping
out possible issues in the future.

● Game Architecture requires deep
understanding of architectural
styles and their
advantages/disadvantages and its
subcomponents

Conclusion

● Super Tux Kart may have suffered from lack of sufficient
architectural planning (possibly due to the open source
aspect of the project).

● Super Tux Kart runs a Layered style architecture with
some Client/Server interactions.

Revised
Architectural Style
Hypothesized

A layered style objected
oriented architecture

SOURCES

Gregory, J. (2009). Game engine architecture. Wellesley, Mass.: A K Peters.
Super Tux Kart Documentation:
http://supertuxkart.sourceforge.net/doxygen/?title=doxygen
Super Tux Kart Source: https://github.com/supertuxkart/stk-code

http://supertuxkart.sourceforge.net/doxygen/?title=doxygen
http://supertuxkart.sourceforge.net/doxygen/?title=doxygen
https://github.com/supertuxkart/stk-code

